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Abstract
We present calculations of the electromagnetic local density of states and of
the corresponding spontaneous emission rate for a two-level atom placed near
a metallic Drude-type nanosphere as well as within clusters of nanospheres.
Our calculations are based on a dyadic Green’s function formalism within the
framework of the multiple-scattering method. We examine the convergence of
the above quantities in terms of the angular expansion of the electromagnetic
field. The frequency and spatial dependence of the local density of states and
of the corresponding spontaneous emission rate is also studied by depicting the
relevant spectra for different cluster sizes and configurations. We have found, in
particular, that within the frequency region of the surface–plasmon resonances
the spontaneous emission rate is influenced by the near field of the spheres
which are closer to the atom, rendering the contribution of the farthest spheres
almost negligible. Depending on the distance from the surface of the sphere(s)
the spontaneous emission rate in the cluster assumes values which can be several
orders of magnitude larger than the corresponding rate in a vacuum. Finally, we
examine the differences which arise when an experimentally available dielectric
function is employed instead of the Drude type.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The optical properties of metallic nanoparticles have attracted much interest in recent years due
to advances in electron-beam lithography and self-assembly nanofabrication techniques which
allow for the preparation of well-defined systems of nanoparticles with a tailored shape, size
and arrangement. A variety of new, interesting and potentially useful physical phenomena arise
when such systems are excited at the surface plasmon resonance frequencies [1–6]. Although
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there have been numerous theoretical studies on assemblies of nanoparticles concerning
properties such as absorption/extinction spectra, local field enhancement, nonlinearities,
surface enhanced Raman scattering (SERS) spectra, etc, calculations of the local density
of states (LDOS) of the electromagnetic (EM) field are still lacking. As has long been
known [7], the spontaneous emission (SpE) rate of atoms/molecules/quantum dots can be
strongly modified when the rate of quantum fluctuations of the photon field in the surrounding
environment differs markedly from that of a vacuum. LDOS is an important quantity, since
it essentially provides the SpE rate of atoms/molecules/quantum dots placed within such
environments according to Fermi’s golden rule [8]. The lack of thorough studies of the SpE
rate in the presence of metallic entities is mainly due to the fact that most of the computational
methods used for calculating the LDOS in structured reservoirs, e.g. photonic crystals, are
based on the plane wave method which can basically treat non-dispersive and non-absorbing
constituent materials such as dielectrics with constant permittivity [9–12]. In order to study
structures consisting of materials other than dielectrics, one has to resort to on-shell methods
such as the transfer matrix method [13] or the multiple-scattering method [14–21]. Up to now,
on-shell LDOS calculations have been reported for a single metallic homogeneous [22, 23] or
stratified sphere [24, 25].

Within the multiple-scattering framework, one of the possible routes one can follow
to calculate the LDOS of the EM field and subsequently the SpE rate is that based on
the dyadic Green’s function formalism. Such an approach has been developed for two-
dimensional (2D) [26] and three-dimensional (3D) systems of cylindrical [27, 28] and spherical
scatterers [29]. The latter work on spherical scatterers is based on a more general treatment of
the dyadic Green’s function of a wavevector field [30]. Namely, the LDOS is provided by the
imaginary part of the trace of the dyadic Green’s function of the system which can either be a
cluster of a finite number of scatterers or an infinite periodic array of scatterers. Since multiple-
scattering theory treats the single-sphere scattering in terms of Mie theory [31], the scatterers
can be made of dispersing and/or absorbing materials such as metals or polar crystals.

In this paper, we first provide a brief summary of the multiple-scattering dyadic Green’s
function formalism. Based on this, we calculate the LDOS and the corresponding SpE rate
from a single metallic Drude-type sphere. We examine the speed of convergence of the LDOS
in terms of the angular momentum expansion of the EM field. LDOS is depicted as a function
of frequency (spectrum) for different distances from the centre of the sphere as well as a
function of distance for a specific frequency (dipole plasmon frequency). Then we proceed
to calculations of the SpE rate for a single sphere and for clusters of Drude spheres of various
arrangements such as linear chains, square or hexagonal clusters, etc. We find in particular that
the LDOS spectrum of a given point in space is principally determined by the spheres residing
in the immediate vicinity of this point and less by farther spheres. We also find that, around
the surface plasmon frequencies, the actual arrangement of the spheres is not important for
the SpE rate as long as the spheres are placed at equal distances from the point for which
the LDOS is calculated. Finally, in order to bring theory closer to experiment, we repeat
some of the SpE rate calculations considering a specific type of sphere, namely gold spheres,
by employing an experimentally available dielectric function for gold instead of the Drude
formula.

2. Theory

We consider a collection of Ns non-overlapping spherical scatterers described by a permittivity
εs and permeability μs centred at sites Rn in a homogeneous host medium described by εh, μh,
respectively. Using site-centred position vectors, the dyadic Green’s function for the system of
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spheres satisfies [29, 30]
∑

i

[
ω2δi ′′i − �i ′′i(Rn + rn)

]
Gii ′ (Rn + rn, Rn′ + r′

n′) = δi ′′i ′δ(rn − r′
n′)δnn′ (1)

where rn = r − Rn , r′
n′ = r′ − Rn′ , and i, i ′ = x, y, z. The operator �i ′′i (r) is given by

Λ(r) = c2

ε(r)μ(r)
∇ × ∇ × (2)

and c is the speed of light in a vacuum. It can be verified that the Green’s tensor satisfying
equation (1) is as follows [30]

Gii ′(Rn + rn, Rn′ + r′
n′)

= G(s)n
ii ′ (rn, r′

n′)δnn′ − iω
(εhμh)

3/2

c3

∑

L L ′
R

n
L;i (rn)Dn′n

L ′ L Rn′
L ′;i ′(r′

n′). (3)

The index L denotes collectively the indices Plm, where l = 1, 2, . . . is the angular momentum
number, m the magnetic number (−l � m � l) and P = E, H denotes the two independent
polarization modes. G(s)n

ii ′ (rn, r′
n′) is the dyadic Green’s function for a single scatterer located

at Rn [29]. Dnn′
L L ′ are propagator functions and represent the contribution of all possible paths

by which a wave outgoing from the n′th sphere produces an incident wave on the nth sphere,
after scattering in all possible ways (sequences) by the spheres at all sites including the nth and
n′th spheres. They are given by [29, 30]

Dnn′
L L ′ = �nn′

L L ′ +
∑

n′′

∑

L ′′
Dnn′′

L L ′′ T n′′
L ′′ �

n′′n′
L ′′ L ′ . (4)

We have found that it is preferable to solve equation (4) iteratively [32] using an appropriate
mixing scheme rather than using a linear system solver, as the latter approach diverges in most
cases.

The matrix �n′′n′
L ′′′ L ′ appearing in equation (4) is called a free-space propagator and

transforms an outgoing vector spherical wave about Rn′ in a series of incoming vector spherical
waves around Rn [29, 30]. The vector functions Rn

L;i (rn), R
n
L;i(rn) are the dimensionless

eigenfunctions of the operator of equation (2) for a single sphere which are regular at its
centre [29, 30]. Finally, the matrix T n

L is the scattering T -matrix of the spherical scatterer
at Rn and is provided by Mie theory [31].

Given the dyadic Green’s function for a collection of scatterers from equation (3), one can
readily obtain the LDOS from [29, 30]

n(r, ω) = −2ω

π
Im

Ns∑

n=1

∑

i=x,y,z

Gii (Rn + rn, Rn + rn; ω2). (5)

The LDOS is appropriate for calculating the SpE rate of a randomly oriented dipole source. If
the dipole is oriented along a specific direction p̂, the SpE is determined by the projected LDOS
(PLDOS)

n(r, ω; p̂) = −2ω

π
Im

Ns∑

n=1

∑

i,i ′=x,y,z

pi Gii ′(Rn + rn, Rn + rn; ω2)pi ′ . (6)

According to Fermi’s golden rule [8], the SpE rate of an atomic dipole with specific orientation
is proportional to the PLDOS. If we denote by � the SpE rate of an atom decaying inside a
structured reservoir (such as the one provided by a finite collection of scatterers) and by �0 the
corresponding SpE rate in a homogeneous medium, the relative SpE rate, �/�0, is given by

�/�0 = n(r, ω; p̂)/n0(ω) (7)
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where n0 = √
εhμhω

2/3π2c3 is the PLDOS of the homogeneous medium for a certain
direction. The LDOS of a homogeneous medium is, of course, three times n0. We note,
however, that the proportionality of the SpE rate with the LDOS is valid only when the atom
lies inside a material which exhibits no dispersion [33]. We also note that the presence of
absorbing bodies such as metallic particles does not affect the validity of Fermi’s golden rule as
was shown previously [22, 23]. In this case, the atomic dipole can also decay non-radiatively
and the SpE rate given by Fermi’s golden rule (equation (7)) is the sum of the radiative and
non-radiative decay rates [6, 22, 23, 25]. Having established the formalism in this section, we
are able to calculate the desired LDOS and PLDOS functions for single and collections of metal
nanoparticles.

3. Results

3.1. Single metallic nanosphere

We begin by considering a single metallic particle which is surrounded by air. An adequate
description of the EM response of metals, more specifically of noble metals, is given by the
well-known Drude formula [34]

εs(ω) = 1 − ω2
p

ω(ω + iτ−1)
, (8)

where ωp is the bulk plasma frequency and τ the relaxation time of the conduction-band
electrons of the metal. The radius of the sphere S is taken to be S = 0.2c/ωp and the losses
(τωp)

−1 = 0.01. Since the plasma frequency h̄ωp is of the order of few eV, the corresponding
radius of the sphere is of the order of tens of nanometres (see the case of a gold particle below).

Figure 1 shows the PLDOS for various distances rs from the surface of the above Drude-
type nanosphere as calculated by equation (5) where the dyadic Green’s function is given by
only the first term of equation (3), i.e. G(s)n

ii ′ (rn, r′
n′) [29]. We have assumed that the test atomic

dipole probing the PLDOS is oriented along a radial axis of the sphere. The different curves
in each subfigure correspond to different cut-offs, lmax, in the angular-momentum (spherical
wave) expansion of the EM field. It is obvious that as the atom is placed closer to the surface
of the sphere, more terms are needed in the spherical wave expansion in order to ensure the
convergence of the PLDOS. For rsωp/c = 0.3, 0.2 we obtain satisfactory convergence for
lmax = 4, whilst for rsωp/c = 0.1, lmax = 6 suffices. However, when we place the atom on top
of the surface (but still outside the sphere) it is hard to achieve convergence. From figure 1(d),
it is evident that even for lmax = 9 the convergence is questionable for frequency regions away
from resonance structure. We see, therefore, that one has to go beyond the dipole approximation
to obtain accurate results for the (P)LDOS, a fact which has also been pinpointed in previous
work [6].

The peaks which form the spectral structure of figure 1 stem from the surface plasmon
resonances of the nanosphere. The surface plasmon frequencies correspond to poles of the
scattering T -matrix of a single Drude sphere, and, in the limit of small sphere radii, they are
given by ω̃l � ωp

√
l/(2l + 1), l = 1, 2, . . . [31]. Using this, one can easily check that the

lowest peak in the curves of figure 1 corresponds to the dipole (l = 1) surface plasmon, the
next peak due to the quadruple (l = 2) surface plasmon, and so on. We observe that away from
the surface of the sphere the dipole peak is the most prominent one. However, as we place the
atom closer to the sphere, the higher-multipole peaks become more evident and, at the surface
of the sphere, they are almost 1.5 orders of magnitude larger that the dipole one. This fact also
signifies the need for the inclusion of higher than dipole terms for an accurate description of the
atom decay near a metallic nanosphere. It is worth noting that the maxima of the corresponding
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Figure 1. LDOS spectrum for a single Drude [(τωp)
−1 = 0.01] nanosphere (Sωp/c = 0.2) as

experienced by an atomic dipole oriented along a radial axis of the sphere for different values
of the angular momentum cut-off lmax and various distances from the surface of the sphere:
(a) rsωp/c = 0.3, (b) rsωp/c = 0.2, (c) rsωp/c = 0.1 and (d) rsωp/c = 0+.

 

 

 

 

 

 

 

 

 

Figure 2. LDOS for a single Drude nanosphere (Sωp/c = 0.2) as a function of the distance from
the centre of the sphere, as experienced by an atomic dipole oriented along a radial axis of the
sphere, for the first surface plasmon resonance, i.e. for ω/ωp = 1/

√
3.

SERS spectra also occur at the surface plasmon frequencies. However, the LDOS spectra are
less sensitive to changes in the field strength since LDOS is proportional to the square of the
electric field whilst the SERS signal is proportional to the fourth power of the field.

In figure 2 we show the convergence of the PLDOS as a function of the distance from the
centre of the sphere for the dipole surface plasmon frequency, i.e. for ω/ωp = 1/

√
3. The
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Figure 3. Normalized SpE rate of an atomic dipole which oscillates radially (solid line) and
tangentially (broken line) with respect to a Drude sphere of radius Sωp/c = 0.2 and is placed
at a distance rsωp/c = 0.5 from the centre of the sphere. Both curves are calculated for lmax = 4.

discontinuity of the PLDOS at the surface of the sphere is due to the discontinuous change in
the dielectric function. It is obvious that outside the sphere, a small number of spherical waves
(small lmax) is sufficient for an accurate description of the PLDOS. However, inside the sphere,
the convergence is much slower with respect to lmax since the description of PLDOS inside the
metal sphere is not as accurate as the corresponding one outside the sphere. This is because,
within the sphere, the operator of equation (2) is no longer Hermitian due to the complex
nature of the dielectric function of the sphere. In this case, the corresponding eigenfunctions
do not constitute a complete orthonormal basis and the respective Green’s tensor, which is built
upon them, is not mathematically correct. PLDOS exhibits a similar behaviour for higher-
multipole (l > 1) resonance frequencies, except that the discontinuity at the surface of the
sphere diminishes gradually as l increases.

Due to the symmetry of the problem, we expect that the PLDOS and the corresponding
SpE rate spectra would be different when the atomic dipole oscillates radially or tangentially
with respect to the sphere. Indeed, this is what we observe in figure 3: the relative SpE rate
�/�0 of an atom whose dipole moment is oriented vertically to a radial axis of the sphere is
markedly smaller than the corresponding one of a parallel-oriented dipole. The peak value of
�/�0 for the radially oriented dipole is about 1000 whilst for the tangentially oriented dipole
it is about 200. This implies that the coupling with the surface–plasmon states is stronger for a
radially oscillating dipole than that for the corresponding tangentially oscillating dipole. This
effect will be used for the interpretation of the SpE spectra of an atom placed within a cluster
of nanospheres which will follow.

3.2. Cluster of nanospheres

We now examine the influence on the SpE rate of more than one metallic nanosphere. We
consider the different arrangements of the spheres shown in figure 4 and calculate the SpE
spectra of a two-level atom placed within the cluster. In particular, we are interested in
investigating the role of the geometrical arrangement of the spheres on the SpE spectra.
Therefore, the distance of the atom from each of the spheres of the cluster is taken to be the

6
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Figure 4. Various clusters of metal nanospheres (Sωp/c = 0.2) simulated in figures 5–7: (a) single
sphere, (b) pair of spheres, (c) square, (d) double-pyramid, (e) hexagon and (f) linear chain. For
the clusters (b)–(e) the atom is assumed to be at the centre of symmetry of the structure which is
d = 0.4c/ωp from the centre of each sphere. At the same distance is placed the atom from a single
sphere (a). In the linear chain (f) the sphere centres are a distance c/ωp apart.

Figure 5. Normalized SpE rate of an atomic dipole oscillating along the x-direction and placed
within the clusters (a)–(e) of figure 4: hexagon of Drude spheres (solid (black) line), double pyramid
(dashed (red)), square (dotted (green)), pair (dash–dotted (blue)), and near a single sphere (dash–
double-dotted (cyan)). In all cases, the distance of the dipole from the centre of the spheres is
d = 0.4c/ωp.

same in the different configurations of figure 4, since the SpE rate decreases very rapidly with
distance (see above). The SpE spectra of the different clusters of figure 4 are shown in figure 5.
A general trend which is observed in this figure is the progressive increase of the SpE rate with
the number of metallic nanoparticles of the cluster which is more obvious in the frequency
regions away from the surface–plasmon resonances. This can be easily understood: as we
add particles to the cluster, there are more EM states available for the atom to decay to. Of
course, this is not generally true; for infinitely periodic dielectric photonic crystals possessing
an omnidirectional photonic band gap, as we add more unit cells to a finite cluster of the crystal,
the LDOS is suppressed [9–12] in the frequency region of the gap due to interference effects.
Another interesting feature of figure 5 is the dependence of the SpE spectrum on the actual
arrangement of the spheres, which is evident from the two curves corresponding to clusters
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Figure 6. Normalized SpE rate of an atomic dipole which is placed between two Drude nanospheres
in the linear chain of figure 4(f) (solid (black) line) at an equal distance h = 0.5c/ωp from the centre
of each sphere and oscillates along the chain axis. The dashed (red) line corresponds to a dipole
which is placed outside the chain at the same distance h from the last sphere whilst the dotted (blue)
one corresponds to the same distance as well but for a single Drude sphere. All curves are calculated
for lmax = 4.

of six nanoparticles. In particular, the SpE curve for the planar hexagonal cluster (solid line)
is overall above the corresponding curve for the 3D double-pyramidal arrangement (dashed
line). We attribute this to the dependence of the SpE spectrum on the orientation of the
dipole as manifested in figure 3. Since the atom is assumed to oscillate along the x-axis, it
is tangentially oriented with respect to the particles which lie on the y- and z-axes. Therefore,
the SpE rate for the double-pyramidal arrangement is expected to be lower than that of the
hexagonal arrangement, because, in the latter arrangement, the tangential component makes a
smaller overall contribution.

Next we consider a linear chain of six equidistant Drude nanospheres. The distance
between the spheres is taken to be a = c/ωp. In figure 6 we show �/�0 for a two-level
atom placed in two different points of the chain: in the middle of the line connecting the
third and the fourth sphere (solid line) and at the end of the chain. The choice to put the
atom between these two particular spheres is arbitrary, since according to our calculations
the solid curve of figure 6 is practically the same for all points in the middle of the line
connecting two spheres of the chain. This means that each sphere essentially interacts only
with its two neighbouring spheres (first-neighbour interaction) giving rise to a tight-binding
description of the EM modes of the chain. The SpE spectrum for an atom placed at the
edge of the chain (dashed line) is significantly lower than that within the chain, since for
this point the atom essentially experiences the presence of a single sphere. This is evident
from the actual coincidence, within the frequency regions of the surface–plasmon resonances,
of the dashed curve with the dotted one which corresponds to the SpE rate in the presence
of a single Drude nanosphere. As a general comment, the SpE rate within the region of the
surface–plasmon resonances is more or less determined by the near-field of the adjacent objects
and is practically independent of any farther objects. We have verified that a similar picture
(not shown for the sake of brevity) to that of figure 6 is true for an atomic dipole oscillating
tangentially to the spheres of the chain except for an overall suppression of the SpE rate, similar
to figure 3.
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Figure 7. The same as figure 6 only now the metallic spheres are not treated generally as Drude-type
spheres but their dielectric function is that of gold and is given by experiment [35].

3.3. Experimental dielectric function

Finally, in order to bring theory closer to experiment, we have employed a more realistic
dielectric function for the metallic nanospheres. Namely, we have considered gold nanospheres
whose dielectric function is taken from experiment [35]. The advantage is that, apart from
the plasmon excitation, it contains all possible sources of absorption such as inter- and intra-
band transitions. In figure 7 we show �/�0 for the same chain of nanospheres of figure 6 but
for the realistic dielectric function of gold [35]. It is evident that for the gold particles, the
enhancement of the SpE rate is about three times smaller than that of Drude particles. The
SpE rate peak of figure 7 is also present for lmax = 1 and, therefore, is of dipolar nature. Other
higher-multipole peaks are not apparent, a fact which has also been demonstrated in absorption/
extinction spectra from arrays of gold nanospheres [36–38]. In other respects, within the region
of the surface–plasmon peak, the SpE spectrum at the end of the chain practically coincides
with that of the single gold sphere, similarly to figure 6. We note that the theoretical spectra of
figure 7 can be experimentally verified by the use of fluorescence-based techniques [6, 39].

4. Conclusions

Based on a dyadic Green’s function multiple-scattering formalism, we have calculated the
LDOS and the SpE rate of atoms placed near a metallic nanosphere as well as of atoms within
finite clusters of nanospheres. We have shown that in order to have an accurate depiction of the
LDOS/SpE rate spectrum one has to consider higher-than-dipole contributions to the EM field.
The number of higher-multipole terms needed increases as we move closer to the surface of the
sphere(s). When a Drude-type dielectric function is employed for the nanospheres, the higher-
multipole terms are also evident as prominent peaks in the LDOS/SpE rate spectra. If a more
realistic dielectric function is assumed for the nanospheres, these peaks are absent except from
the dipole one. The LDOS and the corresponding SpE rate decrease very rapidly away from the
metallic nanospheres and, as a general rule, they are predominantly influenced by the near-field
of the nearest neighbours, for frequencies around the region of the surface plasmon resonances.
The geometrical arrangement of the nanospheres of the cluster influences the SpE rate (though
not dramatically) due to the dependence of the latter on the orientation of the atomic oscillation.

9
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